Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Virol Sin ; 38(3): 470-479, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2320882

ABSTRACT

COVID-19 has become a global public health crisis since its outbreak in China in December 2019. Currently there are few clinically effective drugs to combat SARS-CoV-2 infection. The main protein (Mpro), papain-like protease (PLpro) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 are involved in the viral replication, and might be prospective targets for anti-coronavirus drug development. Here, we investigated the antiviral activity of oridonin, a natural small-molecule compound, against SARS-CoV-2 infection in vitro. The time-of-addition analysis showed that oridonin efficiently inhibited SARS-CoV-2 infection by interfering with the genome replication at the post-entry stage. Mechanistically, the inhibition of viral replication by oridonin depends on the oxidation activity of α, ß-unsaturated carbonyl. Further experiments showed that oridonin not only effectively inhibited SARS-CoV-2 Mpro activity, but also had some inhibitory effects on PLpro-mediated deubiquitinating and viral polymerase-catalyzed RNA elongation activities at high concentrations. In particular, oridonin could inhibit the bat SARS-like CoV and the newly emerged SARS-CoV-2 omicron variants (BA.1 and BA.2), which highlights its potential as a pan-coronavirus antiviral agent. Overall, our data provide strong evidence that oridonin is an efficient antiviral agent against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptide Hydrolases/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Protease Inhibitors/pharmacology
2.
Antiviral Res ; 204: 105365, 2022 08.
Article in English | MEDLINE | ID: covidwho-1894785

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused an ongoing pandemic, coronavirus disease-2019 (COVID-19), which has become a major global public health event. Antiviral compounds remain the predominant means of treating COVID-19. Here, we reported that bergamottin, a furanocoumarin originally found in bergamot, exhibited inhibitory activity against SARS-CoV-2 in vitro, ex vivo, and in vivo. Bergamottin interfered with multiple stages of virus life cycles, specifically blocking the SARS-CoV-2 spike-mediated membrane fusion and effectively reducing viral RNA synthesis. Oral delivery of bergamottin to golden Syrian hamsters at dosages of both 50 mg/kg and 75 mg/kg reduced the SARS-CoV-2 load in nasal turbinates and lung tissues. Pathological damage caused by viral infection was also ameliorated after bergamottin treatment. Overall, our study provides evidence of bergamottin as a promising natural compound, with broad-spectrum anti-coronavirus activity, that could be further developed in the fight against COVID-19 infection during the current pandemic.


Subject(s)
COVID-19 Drug Treatment , Furocoumarins , Animals , Cricetinae , Furocoumarins/pharmacology , Mesocricetus , SARS-CoV-2
3.
PLoS Negl Trop Dis ; 16(4): e0010363, 2022 04.
Article in English | MEDLINE | ID: covidwho-1808522

ABSTRACT

COVID-19 caused by SARS-CoV-2 has posed a significant threat to global public health since its outbreak in late 2019. Although there are a few drugs approved for clinical treatment to combat SARS-CoV-2 infection currently, the severity of the ongoing global pandemic still urges the efforts to discover new antiviral compounds. As the viral spike (S) protein plays a key role in mediating virus entry, it becomes a potential target for the design of antiviral drugs against COVID-19. Here, we tested the antiviral activity of berbamine hydrochloride, a bis-benzylisoquinoline alkaloid, against SARS-CoV-2 infection. We found that berbamine hydrochloride could efficiently inhibit SARS-CoV-2 infection in different cell lines. Further experiments showed berbamine hydrochloride inhibits SARS-CoV-2 infection by targeting the viral entry into host cells. Moreover, berbamine hydrochloride and other bis-benzylisoquinoline alkaloids could potently inhibit S-mediated cell-cell fusion. Furthermore, molecular docking results implied that the berbamine hydrochloride could bind to the post fusion core of SARS-CoV-2 S2 subunit. Therefore, berbamine hydrochloride may represent a potential efficient antiviral agent against SARS-CoV-2 infection.


Subject(s)
Benzylisoquinolines , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , Humans , Membrane Fusion , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization
4.
Signal Transduct Target Ther ; 6(1): 369, 2021 10 25.
Article in English | MEDLINE | ID: covidwho-1483125

ABSTRACT

The lung is the prophylaxis target against SARS-CoV-2 infection, and neutralizing antibodies are a leading class of biological products against various infectious viral pathogen. In this study, we develop a safe and cost-effective platform to express neutralizing antibody in the lung with replicating mRNA basing on alphavirus replicon particle (VRP) delivery system, to prevent SARS-CoV-2 infections. First, a modified VEEV replicon with two subgenomic (sg) promoters was engineered to translate the light and heavy chains of antibody simultaneously, for expression and assembly of neutralizing anti-SARS-CoV-2 antibody CB6. Second, the feasibility and protective efficacy of replicating mRNA against SARS-CoV-2 infection were demonstrated through both in vitro and in vivo assays. The lung target delivery with the help of VRP system resulted in efficiently block SARS-CoV-2 infection with reducing viral titer and less tissue damage in the lung of mice. Overall, our data suggests that expressing neutralizing antibodies in the lungs with the help of self-replicating mRNA could potentially be a promising prophylaxis approach against SARS-CoV-2 infection.


Subject(s)
Alphavirus , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Replicon , SARS-CoV-2/metabolism , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/genetics , Antibodies, Viral/biosynthesis , Antibodies, Viral/genetics , COVID-19/genetics , COVID-19/metabolism , Chlorocebus aethiops , Cricetinae , Female , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2/genetics , Vero Cells
6.
J Gen Virol ; 102(5)2021 05.
Article in English | MEDLINE | ID: covidwho-1218063

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which is highly pathogenic and classified as a biosafety level 3 (BSL-3) agent, has greatly threatened global health and efficacious antivirals are urgently needed. The high requirement of facilities to manipulate the live virus has limited the development of antiviral study. Here, we constructed a reporter replicon of SARS-CoV-2, which can be handled in a BSL-2 laboratory. The Renilla luciferase activity effectively reflected the transcription and replication levels of the replicon genome. We identified the suitability of the replicon in antiviral screening using the known inhibitors, and thus established the replicon-based high-throughput screening (HTS) assay for SARS-CoV-2. The application of the HTS assay was further validated using a few hit natural compounds, which were screened out in a SARS-CoV-2 induced cytopathic-effect-based HTS assay in our previous study. This replicon-based HTS assay will be a safe platform for SARS-CoV-2 antiviral screening in a BSL-2 laboratory without the live virus.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Replicon/drug effects , SARS-CoV-2/drug effects , Animals , Chlorocebus aethiops , Drug Discovery , High-Throughput Screening Assays/methods , Humans , Replicon/genetics , SARS-CoV-2/genetics , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
7.
Am J Transplant ; 20(7): 1916-1921, 2020 07.
Article in English | MEDLINE | ID: covidwho-210165

ABSTRACT

Over 1 000 000 cases of coronavirus disease 2019 (COVID-19) have been confirmed since the worldwide outbreak began. Not enough data on infected solid organ transplant (SOT) recipients are available, especially data about the management of immunosuppressants. We report two cases of COVID-19 in two transplant recipients, with different treatments and prognoses. The first patient received liver transplantation due to hepatitis B virus-related hepatocellular carcinoma and was confirmed to have COVID-19 9 days later. Following a treatment regimen consisting of discontinued immunosuppressant use and low-dose methylprednisolone-based therapy, the patient developed acute rejection but eventually recovered. The other patient had undergone a renal transplant from a living-related donor 17 years ago, and was admitted to the hospital because of persistent fever. This patient was also diagnosed with COVID-19. His treatment regimen consisted of reduced immunosuppressant use. No signs of rejection were observed during the regimen. In the end, the patient successfully recovered from COVID-19. These effectively treated cases can provide a basis for immunosuppressant management of COVID-19-positive SOT recipients.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/therapy , Immunosuppressive Agents/therapeutic use , Organ Transplantation , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Transplant Recipients , Adult , Betacoronavirus , COVID-19 , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/surgery , Hepatitis B/complications , Hepatitis B/surgery , Hepatitis B virus , Humans , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/surgery , Kidney Transplantation , Liver Neoplasms/complications , Liver Neoplasms/surgery , Liver Transplantation , Male , Methylprednisolone/administration & dosage , Middle Aged , Pandemics , Prognosis , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL